Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.27.21261116

ABSTRACT

Background There is an urgent need for fair and equitable access to safe and effective vaccines to end the COVID-19 pandemic. Shortages in reagents and vaccines are a major challenge, as well as limited knowledge on dose response relationship with mRNA COVID-19 vaccines. We explored intradermal fractional dose administration of a mRNA SARS-CoV-2/COVID-19 vaccine as a potential dose-sparing strategy. Methods We conducted a proof-of-concept, dose-escalation, open-label, randomised-controlled vaccine trial (IDSCOVA) in healthy adults aged 18-30 years. To test initial safety, ten participants received 10 g mRNA-1273 vaccine through intradermal injection at day 1 and 29. Following a favourable safety review, thirty participants were 1:1 randomised to receive 20 g mRNA-1273 either intradermally or intramuscularly. The primary endpoint was tolerability and safety. The secondary endpoint was seroconversion and specific IgG concentration against SARS-CoV-2 spike S1 and Receptor Binding Domain (RBD) after the second dose at day 43. We compared results to two historical cohorts of non-hospitalised COVID-19 patients and vaccinated individuals. Findings Thirty-eight of forty included participants (median age 25 years) completed the study. There were no serious adverse events. Self-reported local adverse reactions after intradermal delivery were mild, both in the 10 g and the 20 g group. In the higher dose group, systemic adverse reactions were more common, but still well tolerated. All 38 participants mounted substantially higher IgG-anti-S1 and IgG-anti-RBD concentrations at day 43 than COVID-19 controls. At day 43, anti-S1 (95% CI) was 1,696 (1,309-2,198) BAU/mL for the 10 g intradermal group, 1,406 (953.5-2,074) BAU/mL for the 20 g intramuscular group and 2,057 (1,421-2,975) BAU/mL for the 20 g intradermal group. Anti-S1 was 107.2 (63-182.2) BAU/mL for the convalescent plasma control group and 1,558 (547.8-4,433) BAU/mL for the individuals vaccinated with 100 g mRNA-1273. Interpretation Intradermal administration of 10 g and 20 g mRNA-1273 vaccine was well tolerated and safe, and resulted in a robust antibody response. Intradermal vaccination has the potential to be deployed for vaccine dose-sparing.


Subject(s)
COVID-19
2.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3892129

ABSTRACT

Background: There is an urgent need for fair and equitable access to safe and effective vaccines to end the COVID-19 pandemic. Shortages in reagents and vaccines are a major challenge, as well as limited knowledge on dose response relationship with mRNA COVID-19 vaccines. We explored intradermal fractional dose administration of a mRNA SARS-CoV-2/COVID-19 vaccine as a potential dose-sparing strategy. Methods: We conducted a proof-of-concept, dose-escalation, open-label, randomised-controlled vaccine trial (IDSCOVA) in healthy adults aged 18-30 years. To test initial safety, ten participants received 10 µg mRNA-1273 vaccine through intradermal injection at day 1 and 29. Following a favourable safety review, thirty participants were 1:1 randomised to receive 20 µg mRNA-1273 either intradermally or intramuscularly. The primary endpoint was tolerability and safety. The secondary endpoint was seroconversion and specific IgG concentration against SARS-CoV-2 spike S1 and Receptor Binding Domain (RBD) after the second dose at day 43. We compared results to two historical cohorts of non-hospitalised COVID-19 patients and vaccinated individuals. Findings: Thirty-eight of forty included participants (median age 25 years) completed the study. There were no serious adverse events. Self-reported local adverse reactions after intradermal delivery were mild, both in the 10 µg and the 20 µg group. In the higher dose group, systemic adverse reactions were more common , but still well tolerated. All 38 participants mounted substantially higher IgG-anti-S1 and IgG-anti-RBD concentrations at day 43 than COVID-19 controls. At day 43, anti-S1 (95% CI) was 1,696 (1,309-2,198) BAU/mL for the 10 µg intradermal group, 1,406 (953·5-2,074) BAU/mL for the 20 µg intramuscular group and 2,057 (1,421-2,975) BAU/mL for the 20 µg intradermal group. Anti-S1 was 107·2 (63-182·2) BAU/mL for the convalescent plasma control group and 1,558 (547·8-4,433) BAU/mL for the individuals vaccinated with 100 µg mRNA-1273.Interpretation: Intradermal administration of 10 µg and 20 µg mRNA-1273 vaccine was well tolerated and safe, and resulted in a robust antibody response. Intradermal vaccination has the potential to be deployed for vaccine dose-sparing.Clinical Trial Registration Details: registered in the Netherlands Trial Register (NTR) (https://www.trialregister.nl/trial/9275).Funding Information: The trial was supported by crowdfunding (Wake Up to Corona).Declaration of Interests: All authors declare no competing interests. Ethics Approval Statement: The trial was performed in accordance with the ethical principles of the Declaration of Helsinki and Good Clinical Practice guidelines developed by the International Harmonisation Task Force. The protocol was approved by the Medical Ethical Committee Leiden, Den Haag, Delft (NL 76702.058.21). All participants provided written informed consent. The vaccine manufacturer was not involved in this trial.


Subject(s)
COVID-19
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.04.19.21255727

ABSTRACT

The immune system plays a major role in Coronavirus Disease 2019 (COVID-19) pathogenesis, viral clearance and protection against re-infection. Immune cell dynamics during COVID-19 have been extensively documented in peripheral blood, but remain elusive in the respiratory tract. We performed minimally-invasive nasal curettage and mass cytometry to characterize nasal immune cells of COVID-19 patients during and 5-6 weeks after hospitalization. Contrary to observations in blood, no general T cell depletion at the nasal mucosa could be detected. Instead, we observed increased numbers of nasal granulocytes, monocytes, CD11c+ NK cells and exhausted CD4+ T effector memory cells during acute COVID-19 compared to age-matched healthy controls. These pro-inflammatory responses were found associated with viral load, while neutrophils also negatively correlated with oxygen saturation levels. Cell numbers mostly normalized following convalescence, except for persisting CD127+ granulocytes and activated T cells, including CD38+ CD8+ tissue-resident memory T cells. Moreover, we identified SARS-CoV-2 specific CD8+ T cells in the nasal mucosa in convalescent patients. Thus, COVID-19 has both transient and long-term effects on the immune system in the upper airway.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL